第194章海伦公式的“亲兄弟”
又是新的一日,戴浩文再次站在了学府的讲堂之上,学子们早已整齐端坐,目光中充满了对新知识的渴望。
戴浩文微笑着看向众人,开口道:“诸位学子,上一次我们共同探讨了代数三角形面积公式,今日,为师将为尔等带来它的‘亲兄弟’——另一个与之相关且同样精妙的公式。”
学子们听闻,顿时精神一振,纷纷挺直了腰背,准备全神贯注地聆听。
戴浩文拿起粉笔,在黑板上写下:“假设三角形的三条边长分别为a、b、c,令s=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]4。”
他放下粉笔,说道:“此公式看似复杂,实则与我们之前所学的代数三角形面积公式有着紧密的联系,为师且称其为‘弟弟公式’。”
有学子疑惑道:“先生,此公式与之前的公式有何关联,又该如何运用呢?”
戴浩文不慌不忙地解释道:“莫急,为师这就为尔等解惑。先看这两个公式,皆是以三角形的三边长度为基础。若仔细观察,会发现其形式上虽有差异,但本质相通。”
为了让学子们更好地理解,戴浩文开始举例。他在黑板上画出一个边长分别为5、6、7的三角形。
“我们先用之前的代数三角形面积公式来求解。首先,计算半周长p=(5+6+7)2=9。然后,面积S1=√[9×(9-5)×(9-6)×(9-7)]。”戴浩文边说边计算,“经过计算,S1=6√6。”
“接下来,再用这‘弟弟公式’求解。”戴浩文继续计算,“s=√[(5+6+7)(5+6-7)(5-6+7)(-5+6+7)]4,算得结果同样为6√6。”
学子们纷纷点头,开始自行在纸上计算验证。
戴浩文接着说道:“在实际运用中,有时这个‘弟弟公式’可能会更加简便。比如当三角形的边长数值较为特殊时。”
他又画出一个三角形,边长分别为3、4、5。
“诸位试试用两种公式分别求解。”
学子们迅速动手计算,很快便发现用“弟弟公式”计算更为快捷。
一位学子兴奋地说道:“先生,这‘弟弟公式’当真奇妙!”
戴浩文笑着点头:“然也。但需注意,无论用何种公式,都要仔细计算,切不可粗心大意。”
随后,戴浩文又给出了几道不同类型的三角形题目,让学子们分组讨论,分别用两种公式求解,比较哪种更简便。
课堂上气氛热烈,学子们积极探讨,各抒己见。
戴浩文在各组之间巡视,不时给予指点和提示。
过了一段时间,各组纷纷得出结论,并派代表上台讲解。